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We study the statistics and scaling of extreme fluctuations in noisy task-completion landscapes,
such as those emerging in synchronized distributed-computing networks, or generic causally con-
strained queuing networks, with scale-free topology. In these networks the average size of the
fluctuations becomes finite �synchronized state� and the extreme fluctuations typically diverge only
logarithmically in the large system-size limit ensuring synchronization in a practical sense. Pro-
vided that local fluctuations in the network are short tailed, the statistics of the extremes are
governed by the Gumbel distribution. We present large-scale simulation results using the exact
algorithmic rules, supported by mean-field arguments based on a coarse-grained description.
© 2007 American Institute of Physics. �DOI: 10.1063/1.2735446�

The understanding of the characteristics of fluctuations
in task-completion landscapes in distributed processing
networks is important from both fundamental and
system-design viewpoints. Here, we study the statistics
and scaling of the extreme fluctuations in synchronization
landscapes of task-completion networks with scale-free
topology. These systems have a large number of coupled
components and the tasks performed on each component
(node) evolve according to the local synchronization
scheme. We consider short-tailed local stochastic task in-
crements, motivated by certain distributed-computing al-
gorithms implemented on networks. In essence, in order
to perform certain tasks, processing nodes in the network
must often wait for others, since their assigned task may
need the output of other nodes. Typically, large fluctua-
tions in these networks are to be avoided for performance
reasons. Understanding the statistics of the extreme fluc-
tuations in our model will help us to better understand
the generic features of backlog formations and worst-case
delays in networked processing systems. We find that the
average size of the fluctuations in the associated land-
scape on scale-free networks becomes finite and the larg-
est fluctuations diverge only logarithmically in the large
system-size limit. This weak divergence ensures an au-
tonomously synchronized, near-uniform progress in the
distributed processing network. The statistics of the
maximum fluctuations on the landscape is governed by
the Gumbel distribution.

I. INTRODUCTION

Many artificial and natural systems can be described by
models of complex networks.1–5 The ubiquity of complex

networks has led to a dramatic increase in the study of the
structure of these systems. Recent research on networks has
shifted the focus from the structural �topological� analysis to
the study of processes �dynamics� in these complex intercon-
nected systems. The main problem addressed in these studies
is how the underlying network topology influences the col-
lective behavior of the system.

Synchronization is a good example for processes in net-
works and it is also a fundamental problem in natural and
artificial coupled multicomponent systems.6 Since the intro-
duction of small-world �SW� networks,7,8 it has been estab-
lished that such networks can facilitate autonomous
synchronization.9–11 Synchronization in the context of
coupled nonlinear dynamical systems such as chaotic oscil-
lators has been also studied in scale-free �SF� networks.12–17

In these studies the ratio of the largest to the smallest non-
zero eigenvalues of the network Laplacian �in the linearized
problem� has been used as a measure for “desynchroniza-
tion,” i.e., smaller ratios corresponding to better synchroniz-
ability.

Another synchronization problem emerges in the context
of parallel discrete-event simulations.18–23 Nodes must fre-
quently “synchronize” with their neighbors �on a given net-
work� to ensure causality in the underlying simulated dy-
namics. The local synchronizations, however, can introduce
correlations in the resulting task-completion landscape, lead-
ing to strongly nonuniform progress at the individual pro-
cessing nodes. The above is a prototypical example for task-
completion landscapes in causally constrained queuing
networks.24 Analogous questions can also be posed in
supply-chain networks based on electronic transactions,25

etc. The basic task-completion model has been considered
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for regular �in one-dimensional �1D�19,26,27 and two-
dimensional �2D�28,29�, small-world21 and SF
networks.24,29,30 The extreme fluctuations in SW networks
also have been studied31,32 previously. Here, we provide a
detailed account and new results on the extreme fluctuations
in task-completion networks with SF structure. Through our
study, one also gains some insight into the effects of SF
interaction topologies on the suppression of critical fluctua-
tions in interacting system.

The field of extremes has attracted the attention of engi-
neers, scientists, mathematicians, and statisticians for many
years. From an engineering point of view, physical structures
need to be designed such that special attention is paid to
properties under extreme conditions requiring an understand-
ing of the statistics of extremes �minima and maxima� in
addition to average values.33–35 For example, in designing a
dam, engineers, in addition to being interested in the average
flood, which gives the total amount of water to be stored, are
also interested in the maximum flood, the maximum earth-
quake intensity, or the minimum strength of the concrete
used in building the dam.36 Extreme-value theory is unique
as a statistical discipline in that it develops techniques and
models for describing the unusual rather than the usual.37

Similarly, in networked processing systems, in addition to
the average “load” or progress, knowing the typical size and
the distribution of the extreme fluctuations is of great impor-
tance, since failures and delays are triggered by extreme
events occurring on an individual node or link.

The relationship between extremal statistics and univer-
sal fluctuations of global order parameters in correlated sys-
tems has been the subject of recent intense research.38–51

Closer to our interest, universal distributions for the extreme
“height” fluctuations have been studied for fluctuating
surfaces,52–57 in particular for the Kardar-Parisi-Zhang �KPZ�
surface growth model58 in one dimension.53,54 It turns out
that the basic task-completion landscape �emerging in certain
synchronized distributed computing schemes�, on regular lat-
tices, belongs precisely to the KPZ universality class.19,28 In
this paper, we address the suppression of the extreme fluc-
tuations of the local order parameter �local progress� in SF
noisy task-completion networks.

This paper is organized as follows. In Sec. II we give a
brief review on the extreme-value statistics of independent
and identically distributed random variables, with some fur-
ther details for exponential-like random variables. Section III
describes our prototypical model for task-completion sys-
tems and provides a mathematical framework to analyze the
evolution of its progress landscape. We present our results in
Sec. IV and finish the paper with conclusions and a summary
in Sec. V.

II. EXTREME-VALUE STATISTICS

Extreme-value theory deals with stochastic behavior of
the maxima and minima of random variables. Let us first
focus on independent and identically distributed �iid� random
variables. The distributional properties of the extremes are
determined by the tails of the underlying individual distribu-
tions. By definition extreme values are scarce, implying an

extrapolation from observed levels to unobserved levels, and
extreme-value theory provides a class of models to enable
such extrapolation.37

Historically, work on extreme-value problems may be
traced back to as early as the 1700s, when Bernoulli dis-
cussed the mean largest distance from the origin given some
points lying at random on a straight line of a fixed length
�see Ref. 34�. Theoretical developments of extreme-value
statistics in the 1920s �Refs. 33 and 59–62� were followed by
research dealing with practical applications in radioactive
emissions,63 flood analysis,64 strength of materials,65 seismic
analysis,66 rainfall analysis,67 etc. In terms of applications,
Gumbel34 made several contributions to extreme-value
analysis and called the attention of engineers and statisticians
to applications of the extreme-value theory. Here, we
review68 the basics on the statistics of the maximum of N iid
random variables.

Let X be a random variable with probability density
function �pdf� f�x� and cumulative distribution function �cdf�
F�x� �the probability that the individual stochastic variable is
less than x�. f�x� and F�x� are also referred to as the parent
distributions. Let �Xi�i=1

N be an iid sample drawn from f�x�.
Then the joint pdf can be written as

f�X1,X2, . . . ,XN� = �
i=1

N

f�Xi� , �1�

and their joint cdf as

F�X1,X2, . . . ,XN� = �
i=1

N

F�Xi� . �2�

Then the cdf of the maximum order statistic, XM

=max�X1 ,X2 , . . . ,XN�, for iid random variables, can be writ-
ten as

FM�x� = Pr�XM � x� = Pr�max�X1,X2, . . . ,XN� � x�

= Pr�X1 � x;X2 � x; . . . ;XN � x;� = �
i=1

N

Pr�Xi � x�

= �
i=1

N

F�x� = �F�x��N. �3�

The pdf of XM can be calculated by differentiating the equa-
tion above with respect to x, yielding

fM�x� = Nf�x��F�x��N−1. �4�

In many situations, extreme-value analysis is built on a
sequence of data that is block �sample� maxima or minima. A
traditional discussion on the mean of the sample is based on
the central limit theorem and it forms the basis for statistical
inference theory.69 The central limit theorem deals with the
statistics of the sum SN=X1+X2+ ¯ +XN �proportional to the
arithmetic average� and provides the constants aN and bN

�0 such that YN= �SN−aN� /bN tends in distribution to a non-
degenerate distribution. In the case when X has finite vari-
ance, this distribution is the normal distribution. However,
when the underlying distribution has a slowly decaying �or
heavy� tail, some other stable distributions are attained in-
stead of normal distribution.70 Specifically, power-law distri-
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butions with infinite variance will yield non-normal limits
for the average: the extremes produced by such a sample will
“corrupt” the average so that an asymptotic behavior differ-
ent from the normal behavior is obtained.69

As the sample size N goes to infinity, it is clear that for
any fixed value of x the distribution of the maxima becomes

lim
N→�

FM�x� = �1 if F�x� = 1

0 if F�x� � 1,
�5�

which is a degenerate distribution �it takes the values 0 and 1
only�. If there is a limiting distribution, one has to obtain it in
terms of a sequence of transformed �or reduced� variable,
such as �XM −aN� /bN, where aN and bN��0� may depend on
N but not x. The main mathematical challenge here is finding
the sequence of numbers �aN and bN� such that for all real
values of x �at which the limit is continuous� the limit goes to
a nondegenerate distribution,

Pr	XM − aN

bN
� x
 → GM�x� as N → � . �6�

The problem is twofold: �i� finding all possible �nonde-
generate� distributions G that can appear as a limit in Eq. �6�;
�ii� characterizing the distributions F for which there exist
sequences �aN� and �bN� such that Eq. �6� holds for any such
specific limit distribution.69 The first problem is the (ex-
tremal) limit problem and has been solved in Refs. 33, 62,
and 71 and later revived in Ref. 72. The second part of the
problem is called the domain of attraction problem. Under
the transformation through aN and bN the extreme-types
theorem states that the nondegenerate distribution GM be-
longs to one of the following families:

GM�x� = �exp�− exp	� − x

�

� , − � � x � � , 


�7�

GM�x� = 0, if x � �

exp�− 	 �

x − �

�� , otherwise, � �8�

GM�x� = exp�− 	� − x

�

�� , if x � �

1, otherwise.
� �9�

Collectively, these three classes of distributions are widely
known as Gumbel, Fréchet, and Weibull distributions, re-
spectively. Each family has a location and a scale parameter,
� and �, respectively; additionally, the Fréchet and Weibull
families have a shape parameter, �. The above theorem im-
plies that when XM can be stabilized with suitable sequences
aN and bN, the corresponding normalized variable XM

* = �XM

−aN� /bN, has a limiting distribution that must be one of the
three types of extreme-value distribution. The remarkable
feature of this result is that the three types of extreme-value
distributions are the only possible limits for the distributions
of the XM

* , regardless of the parent distribution F �Table I�. In
this sense, the theorem is an extreme-value analog of the
central limit theorem.37

Now, we briefly summarize the basic properties for the
maximal values of N-independent stochastic
variables33–35,49,73 drawn from a generic exponential-like in-
dividual pdf. We consider the case when the parent comple-
mentary cdf �survival function� S�x�=1−F�x� �the probabil-
ity that the individual stochastic variable is larger than x�
decays faster than any power law in the tail, i.e., exhibits an
exponential-like tail in the large-x limit. �Note that in this
case the corresponding probability density function displays
the same exponential-like asymptotic tail behavior.� Using
Eq. �3� the cumulative distribution FM�x� for the largest of
the N events �the probability that the maximum value is less
than x� can be approximated as49,70,73

FM�x� = �F�x��N = �1 − S�x��N = eN ln�1−S�x�� � e−NS�x�, �10�

where one typically assumes that the dominant contribution
to the statistics of the maximum comes from the tail of the
individual distribution. Now we assume S�x��e−cx�

for
large-x values, where c is a constant and � characterizes the
exponential-like tail. This yields

FM�x� � e−e−cx�+ln�N�
. �11�

The extreme-value limit theorem implies that there ex-
ists a sequence of scaled variables x̃= �x−aN� /bN, such that
in the limit of N→�, the extreme-value probability distribu-
tion for x̃ asymptotically approaches the standard form of the
Gumbel �also known as Fisher-Tippet Type I�
distribution,33,34

GM�x̃� � e−e−x̃
, �12�

with the corresponding pdf,

gM�x̃� � e−x̃−e−x̃
, �13�

with mean �x̃�=	 �	=0.577. . . being the Euler constant� and
variance �x̃

2= �x̃2�− �x̃�2=
2 /6. From Eqs. �11� and �12�, one
can deduce73 that to leading order, the scaling coefficients
must be aN= �ln�N� /c�1/� and bN= ��c�−1�ln�N� /c��1/��−1. Note
that for ��1, while the convergence to Eq. �11� is fast, the
convergence for the appropriately scaled variable to the uni-
versal Gumbel distribution in Eq. �12� is extremely slow.33,73

The average value of the largest of the N iid variables with
an exponential-like tails then scales as

�xmax� = aN + bN	 � �ln�N�/c�1/� �14�

�up to O�1/ ln�N�� corrections� in the asymptotic large-N
limit. When comparing with experimental or simulation data,

TABLE I. Domain of attractions of the most common distributions for the
maximum of iid random variables.

Distribution Domain

Normal Gumbel
Exponential Gumbel
Lognormal Gumbel
Gamma Gumbel
Uniform Weibull
Pareto Fréchet
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instead of Eq. �12�, it is often convenient to use the Gumbel
distribution scaled to zero mean and unit variance, yielding

GM�y� = e−e−�ay+	�
, �15�

where a=
 /�6 and 	 is the Euler constant. In particular, the
corresponding Gumbel pdf becomes

gM�y� = ae−�ay+	�−e−�ay+	�
. �16�

The mathematical arguments in obtaining the limit dis-
tributions above assume an underlying process consisting of
a sequence of independent and identically distributed random
variables. The most natural application of a sequence of in-
dependent random variables is to a stationary series. For
some physical processes, stationarity is a reasonable assump-
tion and corresponds to a series whose variables may be
mutually dependent but whose stochastic properties are ho-
mogeneous in time. There, the main problem is finding the
form of stationarity in terms of the range of dependence.
Then, one attempts to find the time scale of the series in
which extreme events are almost independent. This is a
strong assumption, but there are a number of empirical sta-
tionary series satisfying this property.74 Then, eliminating the
long-range dependence of extremes provides an opportunity
to consider only the effect of short-range �or weak� depen-
dence by using some rigorous35,75 or heuristic arguments
leading to simple quantification in terms of the standard
extreme-value limits.

In this paper we will not discuss in detail the basic for-
mulation and treatment of the extreme-limit distributions of
dependent random variables. Detailed work on limit distribu-
tions and conditions required for different kinds of sequences
such as Markov, m-dependent, moving average, normal se-
quences, etc., can be found in the literature.36,37 Most of the
research focused on weakly correlated random variables35,75

and only recent results have become available on the statis-
tical properties of the extremes of strongly correlated
variables.52–57 Traditional approaches, based on effectively
uncorrelated variables, immediately break down. Only re-
cently, Majumdar and Comtet53,54 obtained analytic results
for the distribution of extreme-height fluctuations in the sim-
plest strongly correlated fluctuating landscape: the steady
state of the one-dimensional Edwards-Wilkinson surface-
growth model �EW/KPZ�.

As it becomes apparent, in light of recent results on
SW,32,76 and our new results on SF networks presented here
�Sec. IV�, implementing our stochastic nonlinear rules for
the task-completion model on a complex interaction topol-
ogy, in effect, “eliminates” the complexity of the task-
completion landscape. While in low dimensions and regular
topologies fluctuations are strongly correlated and “critical”
in that they are controlled by a diverging correlation length,
on complex networks, correlations become weak �or mean-
field �MF� like�, and one expects the extreme fluctuations in
the task-completion landscape to be effectively governed by
the traditional extreme-value limit distributions for indepen-
dent variables.

III. TASK-COMPLETION NETWORKS

A. The model and its coarse-grained description

Consider an arbitrary network in which the nodes inter-
act through the links. The nodes are assumed to be task pro-
cessing units, such as computers or manufacturing devices.
Each node has completed an amount of tasks �i and these
together �at all nodes� constitute the task-completion land-
scape ��i�t��i=1

N . Here t is the discrete number of parallel steps
executed by all nodes, which is proportional to the real time,
and N is the number of nodes. At each parallel step t, only
certain nodes can receive additional tasks and when that hap-
pens we say that an update happened at those nodes. In this
particular model the nodes that are updated at a given step
are those whose completed task amount is not greater than
the tasks at their neighbors. The connections between the
nodes are usually undirected �or bidirectional�, i.e., if node i
compares its local field variable with j then node j makes the
same comparison with node i. We also choose the amount of
new tasks arriving at a node to be a random variable distrib-
uted according to an exponential distribution �Poisson asyn-
chrony�. An example of a system being described by this
model is a parallel computer simulating short-range corre-
lated discrete events in continuous time with a Poisson inter-
arrival time distribution between the events �independent
events�.18–23 Thus, denoting the neighborhood of the node i
by Si, if �i�t��minj�Si

�� j�t��, the node i completes some ad-
ditional exponentially distributed random amount of task;
otherwise, it idles. In its simplest form the evolution equation
for the amount of task completed at the node i can be written
as

�i�t + 1� = �i�t� + �i�t� �
j�Si

�� j�t� − �i�t�� , �17�

where �i is the local field variable �amount of task com-
pleted� at node i at time t; �i�t� are identical, exponentially
distributed random variables with unit mean, delta correlated
in space and time �the new task amount�; and �¯� is the
Heaviside step function. Despite its simplicity, this rule pre-
serves unaltered the asynchronous causal dynamics of the
underlying task-completion system.18,19

While the dynamics above Eq. �17� is motivated by the
precise algorithmic rule in parallel discrete-event simulations
�PDES�,18,19,21 it also has broader applications in “causally
connected” stochastic multicomponent systems:24 The
“neighborhood” local minima rule �Eq. �17�� is an essential
ingredient of generic causally constrained queuing
networks.22 In order to perform certain tasks, processing
nodes in the queuing/processing network often must wait for
others, since their assigned task may need the output of other
nodes. Examples include manufacturing supply chains and
various e-commerce-based services facilitated by intercon-
nected servers.25,77 Understanding the statistics of the ex-
treme fluctuations in our model will help us to better under-
stand the generic features of backlog formations and worst-
case delays in networked processing systems.

While the local synchronization rule gives rise to
strongly nonlinear effective interactions between the nodes,
we can gain some insight by considering a linearized version

026104-4 Guclu, Korniss, and Toroczkai Chaos 17, 026104 �2007�

Downloaded 10 Jul 2007 to 128.165.96.221. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



of the corresponding coarse-grained equations. As we have
shown,19,21,28 neglecting nonlinear effects, the dynamics of
the exact model in Eq. �17� can be effectively captured by the
EW process78 on the respective network. The EW process on
the network is a prototypical synchronization problem in a
noisy environment, where interaction between the nodes is
facilitated by simple relaxation19,21,79,80 through the links,

�t�i = − �
j=1

N

Cij��i − � j� + �i�t� . �18�

Here, ��i�t�� j�t���=2�ij��t− t�� and Cij is the coupling matrix
with Cii=0. In this work, for simplicity, we only consider the
case of symmetric couplings, Cij =Cji. By using Cij we can
define the network Laplacian,

�ij = �ijCi − Cij , �19�

where Ci=�lCil, and rewrite Eq. �18� as

�t�i = − �
j=1

N

�ij� j + �i�t� . �20�

The above mapping suggests that on low-dimensional
regular lattices task-completion landscapes will exhibit
kinetic roughening.81–83 The landscape width provides
a sensitive measure for the average degree of
desynchronization,19,21

�w2�N,t�� =� 1

N
�
i=1

N

��i�t� − �̄�t��2� , �21�

where �¯� denotes an ensemble average over the noise and
�̄�t�= �1/N��i=1

N �i�t� is the mean value of the local task at
time t. In addition to the width, we will study the scaling
behavior of the average of the largest fluctuations above the
mean in the steady-state regime,

��max� = ��max�t� − �̄�t�� , �22�

where �max�t�=max��1�t� ,�2�t� , . . . ,�N�t��.
Since we use the formalism and terminology of nonequi-

librium surface growth phenomena, we briefly review scal-
ing concepts for self-affine, or rough surfaces, on regular
spatial lattices. The scaling behavior of the width �w2�N , t��,
alone typically captures and identifies the universality class
of the nonequilibrium growth process.81–83 In a finite system
the width initially grows as �w2�N , t��� t2�, and after a
system-size-dependent crossover time t��Nz, it reaches a
steady-state value �w2�N , t���N2� for t� t�. In the relations
above �, �, and z=� /� are called the roughness, the growth,
and the dynamic exponent, respectively. In this work, we will
only consider the steady-state properties of the associated
task-completion landscapes.

B. Previous work: Extreme fluctuations
in regular and SW networks

In one dimension on a regular lattice, with the relevant
nonlinearities taken into account, we have shown19,84 that the
evolution of the task-completion landscape �Eq. �17�� be-
longs to the KPZ �Ref. 58� universality class.81 Indeed, when
simulating the precise rule given by Eq. �17�, the evolution

of the associated task-completion landscape exhibits KPZ-
like kinetic roughening.19,28 Further, in the steady state, fluc-
tuations are governed by the Edwards-Wilkinson
Hamiltonian.85

In regular networks, the task-completion landscape is
rough19,28 �desynchronized state�, i.e., it is dominated by
large-amplitude long-wavelength fluctuations. The extreme
local fluctuations emerge through these long-wavelength
modes and, in one-dimensional regular networks, the ex-
treme and average fluctuations follow the same power-law
divergence with the system size27,31,32,52–54,57

��max� � ��w2� � N� � N1/2, �23�

where �=1/2 is the roughness exponent for the KPZ/EW
surfaces.81 On this regular lattice, the average size of the
largest fluctuations below the mean ���min�= ��̄−�min�� and
the maximum spread ���max−min�= ��max−�min�� follow the
same scaling as the average maximum fluctuation with the
system size. The diverging width is related to an underlying
diverging length scale, the lateral correlation length, which
reaches the system size N for a finite system. This divergent
width hinders the synchronization �near-uniform progress� in
low-dimensional regular task-completion networks.26,27

The width distribution for the EW �or a steady-state one-
dimensional KPZ� class is characterized by a universal scal-
ing function, ��x�, such that P�w2�= �w2�−1��w2 / �w2��
=N−1��w2 /N�, where ��x� can be obtained analytically for a
number of models including the EW class.86 The width dis-
tribution for the task-completion system on a one-
dimensional network is shown in Fig. 1�a�. Systems with N
�103 show convincing data collapse onto this exact scaling
function. The convergence to the limit distribution is very
slow when compared to other microscopic models, such as
the single-step model,81,87 belonging to the same KPZ uni-
versality class.

The extreme-value limit theorems summarized in the
previous section are valid only for independent �or short-
range-correlated� random variables. Since the “heights” �lo-
cal progress� in task-completion landscapes of regular net-
works are strongly correlated, the known extreme-value limit
theorems cannot be used. Some remarkable recent analytic
work yielded the distribution of the extreme heights for the
one-dimensional EW/KPZ steady-state surface.53–56 Al-
though the local microscopic rule for the evolution of the
task-completion landscapes are different, they belong to the
same EW/KPZ universality class in one dimension,81 and
hence, expected to exhibit the same universal distribution for
the extreme fluctuations. Equation �23� suggests that, similar
to the width and its distribution, there is a single scale gov-
erning the diverging extreme fluctuations, and hence, the
normalized probability density function of the maximum
relative fluctuations �max has a universal scaling form,
P��max��N−�f��max/N��. For the 1D EW/KPZ surface with
periodic boundary conditions ��=1/2�, by using path-
integral techniques, Majumdar and Comtet53,54 found f�x� to
be the so-called Airy distribution function. Our simulation
results show that the appropriately scaled maximum relative
height distributions are in agreement with the theoretical dis-
tribution as can be seen in Fig. 1�b�.
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Recently, we have studied the extreme fluctuations in
task-completion landscapes on SW networks.32,76 In particu-
lar, we considered two SW-synchronized network models: in
one case, a small �variable� density of random links were
added on top of a one-dimensional ring; in the other case,
each node had exactly one random �possibly long-range�
connection, and the “coupling strength” �relative frequency
of synchronization through the long-range link� was varied.
The basic findings were the same for both cases. As a result
of the nonzero density or nonzero strength of random links,
the correlation length � becomes finite in such networks �as
opposed to the diverging correlation length on the one-
dimensional ring�. This important property is intimately re-
lated to the emergence of an effective nonzero mass of the
corresponding network propagator �the inverse of the net-
work Laplacian�.79 This is the fundamental effect of extend-
ing the original dynamics to a SW network: it decouples the
fluctuations of the originally correlated landscape. Then, the
extreme-value limit theorems can be applied using the num-
ber of independent blocks N /� in the system.49,73 For short-

tailed noise, the local individual task fluctuations also exhibit
short �exponential-like� tails, S��i��exp�−c��i /w���, where
�i=�i− �̄ is the relative “height” measured from the mean at
site i. �Note that the exponent � for the tail of the local
relative height distribution may differ from that of the noise
as a result of the collective �possibly nonlinear� dynamics,
but the exponential-like feature does not change.� Then, the
�appropriately scaled� largest fluctuations are governed by
the Gumbel pdf �Eq. �12��, and the average maximum rela-
tive height scales as

��max� � w	 ln�N/��
c


1/�

�
w

c1/� �ln�N��1/�. �24�

�Note that both w and � approach their finite asymptotic
N-independent values for SW-coupled systems, and the only
N-dependent factor is ln�N� for large N values.� In SW-
synchronized systems with unbounded local variables driven
by exponential-like noise distribution �such as Gaussian�, the
extremal fluctuations increase only logarithmically with the
number of nodes. This weak divergence, which one can re-
gard as marginal, ensures synchronization for practical pur-
poses in coupled multicomponent systems.

Note that the exact “microscopic” dynamics �Eq. �17��
based on the task-completion rule is inherently nonlinear, but
the effects of the nonlinearities only give rise to a renormal-
ized nonzero effective mass.21 Thus, the synchronization dy-
namics is effectively governed by EW relaxation in a SW,
yielding a finite correlation length and, consequently, the
slow logarithmic increase of the extreme fluctuations with
the system size �Eq. �24��. Also, for the task-completion
landscapes, the local height distribution can be asymmetric
with respect to the mean, but the average size of the height
fluctuations is, of course, finite for both above and below the
mean. This specific characteristic simply yields different
prefactors for the extreme fluctuations �Eq. �24�� above and
below the mean, leaving the logarithmic scaling with N un-
changed.

Simulating the exact local task-completion rule �Eq.
�17��, we observed that the local height fluctuations exhibit
simple exponential tails, hence �=1 and the extremes scale
as ln�N� with the number of nodes.31,32,76 The largest relative
deviations below the mean ��min�, and the maximum spread
��max−min� follows the same logarithmic scaling with the sys-
tem size N.

IV. SCALE-FREE TASK-COMPLETION NETWORKS

Recent studies show that many natural and artificial sys-
tems such as the Internet, World Wide Web, scientific col-
laboration networks, and e-mail networks have power-law
degree �connectivity� distributions,1 i.e., the probability of
having nodes with k degrees is P�k��k−	, where 	 is usually
between 2 and 3. These systems are commonly known as
power-law or scale-free networks since their degree distribu-
tions are free of scale and follow power-law distributions
over many orders of magnitude. Scale-free networks have
many interesting properties such as high tolerance to random

FIG. 1. �a� The scaled distribution of the width of task-completion land-
scapes on a one-dimensional regular network. The inset is the same graph in
log-linear scale. The dashed curve is the scaled width distribution of the
KPZ/EW surface �Ref. 86�. �b� The scaled distribution of the maximum
fluctuations in the same network. The inset is in log-linear scale and the
dashed curve is the appropriately scaled Airy distribution function �Refs. 53
and 54�.
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errors and attacks �yet low tolerance to attacks targeted at
hubs�,88 high synchronizability,24,29,30 and resistance to
congestion.89,90

In this paper, in part, we employed the Barabási-Albert
�BA� model of network growth inspired by the formation of
the World Wide Web91 to generate scale-free networks. This
model is based on two basic observations: growth and pref-
erential attachment. The basic idea is that the high-degree
nodes attract links faster than low-degree nodes. The net-
work starts growing from m0=m+1 nodes and at every time
step a new node with m �“stubs”� possible undirected links is
added to the network. The probability that the new node j is
connected to already existing node i is linearly proportional
to the degree of the node j, i.e., Pr�i→ j�=kj /�lkl. Once the
given number of nodes N is reached in the network, the
process is stopped. For the BA network, the degree distribu-
tion is a power law in the asymptotic system size limit �N
→�, also called thermodynamic limit�, PBA�k��2m2 /k3. �In
obtaining this normalization, one replaces the sum by the
integral over the degree.� Since every node has m links ini-
tially, the network at time t will have N=m0+ t nodes and
E=mt links; thus the average degree �k�=2m for large
enough t. The special case of the model when m=1 creates a
network without any loops, i.e., the network becomes a tree
with no clustering.

Another model we employed to generate scale-free net-
works and to compare with the BA model is the configura-
tion model �CM�. The CM92–94 was introduced as an algo-
rithm to generate random networks with a given degree
distribution. Although CM has been considered to generate
uncorrelated random networks, it was shown that it has cor-
relations, especially between the nodes with larger
degrees.95,96 In CM, the vertices of the graph are assigned a
sequence of degrees �ki�i=0

N ,m�ki�kc from a desired distri-
bution P�k�. �There is an additional constraint that the �iki

must be even.� Then, pairs of nodes are chosen randomly and
connected by undirected edges. This model generates a net-
work with the expected degree distribution and no degree
correlations; however, it allows self-loops and multiple con-
nections when it is used as described above. It was proven in
Ref. 95 that the number of multiple connections when the
maximum degree is fixed to the system size, i.e., kc=N,
scales with the system size N as N3−	 ln N. After this proce-
dure we simply delete the multiple connections and self-
loops from the network, which gives a very marginal error in
the degree distribution exponent. This might also cause some
negligible number of nodes in the network to have degrees
less than the fixed minimum degree �m� value or even zero.
Another characteristic of the CM is that the network may not
be a connected network for small values of m such as 1 and
even 2, i.e., it has disconnected clusters �or components�. For
high values of m, the network is almost surely connected
having one giant component including all the nodes. The
degree distribution of SF networks with degree exponent 	
�for kc�m� can be written as

P�k� � �	 − 1�m	−1k−	, �25�

where m is the minimum degree in the network, and again, in
obtaining the above normalization, we replaced the sum by

the integral over the degree. Then, the average and the mini-
mum degree are related through �k�=m�	−1� / �	−2�.

A. Mean-field and exact numerical diagonalization
approaches for the EW process on SF networks

We, again, can gain some insight into the problem by
first considering the linearized effective equations of motion,
i.e., the EW process �Eq. �18�� on a SF network. In the MF
approximation, local task fluctuations about the mean are
decoupled and reach a stationary distribution with variance30

���i − �̄�2� � 1/Ci. �26�

For identical �unweighted� couplings �with unit link strength
without loss of generality�, Cij is simply the adjacency ma-
trix; hence, Ci=�lCil=ki, i.e., the degree of node i. Then, for
the width, one can write

�w2� =
1

N
�
i=1

N

���i − �̄�2� �
1

N
�

i

1

Ci
=

1

N
�

i

1

ki

� �
m

�

dk
P�k�

k
, �27�

where using infinity as the upper limit in the above integral is
justified for SF networks as N→�, since 	�0. Using the
degree distribution of SF networks given by Eq. �25�, one
finally obtains the mean-field expression for the width

�w2� �
1

m

�	 − 1�
	

=
1

�k�
�	 − 1�2

	�	 − 2�
. �28�

The main message of the above result is that the width ap-
proaches a finite value in the limit of N→�, and for the
linearized problem, should scale as �w2��1/m�1/ �k�.

Extracting the steady-state width from exact numerical
diagonalization30,80 through

�w2� =
1

N
�
k=1

N−1
1

�k
, �29�

where �k are the nonzero eigenvalues of the network Laplac-
ian on the corresponding SF network, supports these MF
predictions �Fig. 2�. Except for the m=1 BA network �when
the network is a scale-free tree�, finite-size effects are negli-
gible as the width approaches a finite value in the N→�
limit �Fig. 2�a��. For m=1, the width weakly �logarithmi-
cally� diverges with the system size �Fig. 2�a� inset�. A closer
look at the spectrum reveals that the gap approaches a non-
zero value for m�1 as N→�, while it slowly vanishes for
the m=1 BA network. As can be expected, the inset of Fig.
2�b� indicates that MF scaling �Eq. �28�� for the width works
well for sufficiently large minimum �and average� degree,
m�O�10�. Figure 2�c� also shows results for the CM net-
work for two values of 	 and the corresponding MF result.

We also note that the average width, in principle, can
also be obtained by employing the density of states �dos�
���� of the underlying network Laplacian through �w2�
= �1/N��l=1

N−11 /�l���1/������d�, in the asymptotic large-N
limit.79,97 Obtaining the dos analytically, however, is a rather
challenging task. Just recently, using the replica method,98,99
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Kim and Kahng obtained the dos for the Laplacian of SF
graphs,100 which they were able to evaluate in the asymptotic
1� �k��N limit. Utilizing their result for ����, we have
checked and found full agreement with Eq. �28� for the
width.

While our MF approach above does not directly address
the typical size of the maximum relative height of the task-
completion landscape, the finding that the width is finite in
the N→� limit suggests that correlations between height
fluctuations at different nodes are weak �with the exception

of the m=1 BA tree�. Then, one can argue on the scaling of
the extremes as follows. The largest fluctuations will most
likely emerge from the nodes with �or close to� the smallest
degree m �Eq. �26��. The typical size of the fluctuations on
such nodes, according to Eq. �26�, is ����i− �̄�2�ki=m�m−1/2.
The expected number of nodes with the smallest degree m is
Nm�NP�m���	−1��N /m�. Thus, assuming that the fluctua-
tions on these nodes are independent, we expect

��max� = ��max − �̄� � ����i − �̄�2�ki=m�ln��	 − 1��N/m���1/�

� m−1/2�ln�N��1/�, �30�

and the distribution of the extremes is governed by the Gum-
bel distribution in the asymptotic large-N limit. Note that the
exponent � depends on the details of the noise �or local sto-
chastic task increments�, e.g., �=2 for Gaussian-like tails
and �=1 for exponential tails. The m−1/2 prefactor is also
specific to the linear EW coupling on the network by virtue
of Eq. �26�, and we do not expect to be generally applicable.
We do expect, however, that the weak logarithmic diver-
gence with the system size, Eq. �30�, governed by the Gum-
bel distribution, will hold for the actual simulated task-
completion landscape, which evolves according to the
synchronization rule Eq. �17�, on SF networks.

B. Simulation results

In this section we present detailed results and analysis of
the simulations of the exact task-completion rule �Eq. �17��
on BA and CM networks. We simulated the task-completion
system on these networks and measured the steady-state
width �Eq. �21�� and maximum fluctuations over many dif-
ferent network realizations and generated their distributions.

Figure 3 shows the average maximum fluctuations and
the width as a function of m for different system sizes rang-
ing from 100 to 10 000. Each data point was obtained by
averaging over ten different network realizations. As can be
seen from Fig. 3�a�, ��max� rapidly approaches a system-size-
dependent constant. For the m=1 BA model, the network is a
tree, and ��max� is visibly larger than for higher values of m.
Figure 3�b� contains the same data points as Fig. 3�a�, but the
data is plotted as a function of the system size, for different
values of m. The average maximum fluctuations in Fig. 3�b�
scale logarithmically �or diverge weakly� with the system
size for all values of m. Again, the m=1 case is different
from others in terms of the prefactors, although they all ex-
hibit logarithmic divergence. Thus, for BA networks, we find

��max� � ln�N� , �31�

supporting the MF prediction �Eq. �30��. The “clean” loga-
rithmic scaling in Fig. 3�b� is the result of the individual task
distributions P��i− �̄� having an exponential tail ��=1� for
the task-completion rule.

With the exception of the m=1 BA tree, the width con-
verges to an essentially system-size-independent, but non-
zero, value �Fig. 3�c��. The main difference, with respect to
the MF prediction, is the nonvanishing “intrinsic” width as
m→�. This behavior is due to the specific synchronization
rule �Eq. �17��. Namely, when m is large, only a couple of
nodes are allowed to increment, hence the landscape fluctua-

FIG. 2. Steady-state width of the EW synchronization landscape from exact
numerical diagonalization using Eq. �29�. �a� For the BA network, as a
function of N for various values of the minimum degree m. The inset shows
the same data on log-linear scales. �b� For the BA network, as a function of
m for different system sizes N. The inset shows the behavior of the width vs
1/m; the solid straight line represents the MF result �Eq. �28��. �c� For the
BA and CM networks �with 	=3.0 and 	=3.5� as a function of 1/ �k�, where
�k� is the average degree, for two system sizes. The bold straight solid and
dashed lines correspond to the MF result �Eq. �28�� with 	=3.0 and 	
=3.5, respectively.
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tions are essentially governed by the stochastic task incre-
ments at these nodes. Since the variance of the local fluctua-
tions is unity, the width of the landscape converges to unity
for large m �Fig. 3�c��. It can be seen in Fig. 3�d� that the
width has a logarithmic divergence for m=1 and it is a con-
stant for m�1, i.e., for large N,

�w2�N�� � �ln�N� , if m = 1

const, if m � 1.
�32�

The CM network has very similar characteristics to the
BA model in terms of the scaling of maximum fluctuations
and width. Figure 4�a� shows that the average maximum
fluctuations for CM network with 	=3, as a function of m,
have the same behavior as for the BA model. Since the CM
generates a �single-component� connected network with very
low probability for m=1, we only present results for m�1.
As can be seen in Fig. 4�b� ��max� increases logarithmically
with the system size. The data points were obtained by av-
eraging over ten different realizations of the network. One
observes that at low values of 	, ��max�m=2�� is closer to
��max�m�2�� and the difference increases as 	 increases.
This implies that having fewer high-degree nodes in the net-
work �	=4� separate ��max�m=2�� from ��max�m�2��.

The average width as a function of m �Fig. 4�c�� for 	
=3 decays and reaches its asymptotic value. The scaling of
the width as a function of the system size is in Fig. 4�d�. The
error bars are quite visible although we use at least ten dif-
ferent network realizations. There is a slight increase in the

width as a function of the system size for m=2, whereas for
larger m, the width quickly saturates as a function of N.

Figure 5�a� shows the individual task distributions �par-
ent distributions for the extremes� for the BA network with
m=2 and N=104. These distributions exhibit simple expo-
nential tails ��=1� �inherited from the local exponential task
increments�. The nodes for which the distributions presented
in Fig. 5�a� were selected manually according to their de-
grees. We selected high �also maximum�-, middle-, and low
�also minimum�-degree nodes. The legend shows both the
index of the node, which is the “age” of the node according
to the preferential attachment procedure in the BA model,
and its degree. For larger m the distributions yield better
collapse to an exponential, and also their negative parts �for
the fluctuations below the mean� become smaller, i.e., the
fluctuations are asymmetric about the mean �due to the spe-
cific local task-increment rules�. It can also be seen that the
negative part of the individual task distributions are not pure
exponentials, i.e., ��1, which makes the convergence of the
fluctuations of the minima ��min� toward their limiting Gum-
bel distribution much slower.

Figures 5�b� and 5�c� show the distributions of the maxi-
mum fluctuations and the width for the BA model with m
=2 and their comparison to the Gumbel and Gaussian distri-
butions, respectively. The insets in Figs. 5�b� and 5�c� have
the same data as the main graph but scaled to zero mean and
unit variance, and in a log-linear scale to show the collapse
to the limit distributions in the tails. The pure exponential

FIG. 3. Average maximum fluctuations and average width for SF networks generated by the BA model. The data points are obtained by averaging over ten
different network realizations. �a� Maximum fluctuations vs m. �b� Maximum fluctuations vs system size. �c� Width vs m. �d� Width vs system size.
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behavior of individual task distributions in Fig. 5�a� suggests
that the limit distribution for the maximum fluctuations
would be a Gumbel distribution. As can be seen in Fig. 5�b�
the limit distributions have better collapse as the system size
gets larger. The width distributions for the BA model with
m=2 are plotted in Fig. 5�c�. The mean-field approximation
predicts that the local task fluctuations are decoupled and,
consequently, the distribution of the width converges to a
Gaussian for large enough systems. We verified this predic-
tion and showed that the width distributions converge to
delta functions, and when they are scaled to zero mean and
unit variance they collapse to a standard Gaussian distribu-
tion for large enough system size. When m=1 the width
distribution converges to a nontrivial shape with an exponen-
tial tail.

Similar to individual task distributions in the BA model,
the CM has pure exponential distributions in the tail as
shown in Fig. 6�a� for m=3, 	=3, and system size N=104.
The nodes are selected according to their degrees, i.e., a few
high-, middle-, and low-degree nodes. The maximum fluc-
tuation distributions converge to Gumbel distributions even
for small systems as can be seen in Fig. 6�b�. It can be
concluded for the CM that the width distributions converge
to delta functions as the system size goes to infinity, and
when they are scaled to zero mean and unit variance they
converge to the standard Gaussian �Fig. 6�c��. For the some-
what subtle case of the CM network with m=2 the conver-
gence to a finite width is slow �see Fig. 4�d�� possibly due to
strong finite system-size effects.

V. SUMMARY AND CONCLUSIONS

In this work, scaling and distribution of the average and
the maximum fluctuations above the mean in scale-free task-
completion landscapes with local relaxation, unbounded lo-
cal variables, and short-tailed noise have been investigated.
Two different scale-free network generation methods have
been used: the Barabási-Albert model �utilizing preferential
attachment� and the configuration model �having a pre-
defined degree sequence drawn randomly from a power-law
distribution�. Both methods give qualitatively very similar
results for average and maximum fluctuations in task-
completion systems.

First, we presented a mean-field approach by considering
the linearized effective equations of motion �EW process�
and using the exact numerical diagonalization of the network
Laplacian. Second, we confirmed the mean-field results by
simulating the task-completion system and showed that the
steady-state average fluctuations �width� converges to a
system-size-independent constant quickly in the BA model
but very slowly in the CM, possibly because of stronger
finite-size effects, as the system size goes to infinity. The
only exception to this is that, if the minimum degree is one in
the BA model, the width scales logarithmically with the sys-
tem size, which is also described as the pathological case
since the resulting network is a tree without loops or cluster-
ing. Unfortunately, when the minimum degree is one in the
CM it is almost impossible to generate a connected network,
especially for large systems, and the resulting disconnected

FIG. 4. Average maximum fluctuations and the width for SF CM networks with 	=3. The data points are obtained by averaging over ten different network
realizations. �a� Maximum fluctuations vs m. �b� Maximum fluctuations vs system size. �c� Width vs m. �d� Width vs system size.
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network cannot be simulated in the task-completion frame-
work. Also, as the minimum degree �consequently, the aver-
age degree� gets larger the width converges to unity for all
system-sizes in both models. On the other hand, the average
maximum fluctuations depends on the system size in a loga-
rithmic fashion for all values of minimum degree in both
models. This logarithmic dependence makes the system un-

FIG. 5. Distributions of �a� individual fluctuations, �b� maximum fluctua-
tions, and �c� the width for the BA model with m=2. The different indi-
vidual fluctuations distributions in �a� are for different degree values ranging
from the maximum to the minimum. The insets in �b� and �c� show the same
distributions of the main graph but scaled to zero mean and unit variance in
a log-linear scale. The dashed curves in the insets represent the Gumbel pdf
�Eq. �16�� in �b� and Gaussian pdf in �c� scaled in the same way. The system
size is N=104.

FIG. 6. Same as Fig. 5 for the CM network with 	=3 and m=3.
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scalable but for practical purposes it can be considered mar-
ginally scalable.

The review on extreme-value limit distributions illus-
trates that the pure exponential parent distributions �an effect
of exponential noise� on individual nodes give rise to Gum-
bel distribution for maximum fluctuations above the mean.
We confirmed this prediction and showed that when the in-
teraction topology is scale free, having a power-law degree
distribution, the statistics of the extremes are governed by
the Gumbel distribution while the distribution of average
fluctuations converges to a Gaussian when appropriately
scaled. This finding directly addresses synchronizability in
generic task-completion systems with scale-free network to-
pology, where relaxation through the links is the relevant
node-to-node process and effectively governs the dynamics.

Our work also helps one to gain some insight into the
effects of scale-free interaction topologies on the suppression
of critical fluctuations in interacting systems. In Ref. 101, a
different stochastic opinion formation model similar to the
Ising model based on the neighborhood of the nodes has
been studied, and contrary to our findings it was found that
larger values of average degree cause larger fluctuations.
Scale-free topology has also been used in the context of
coupled nonlinear dynamical systems such as chaotic
oscillators.12–17 In these studies the ratio of the largest to the
smallest nonzero eigenvalues of the network Laplacian has
been used as a measure of desynchronization. The mean-field
approach in our work shows that the width �our measure for
desynchronization� is the sum of all nonzero inverse eigen-
values. In Ref. 102, it was calculated that the eigenvalue
ratio is proportional to the ratio of the maximum degree to
the minimum degree. We conclude that for a fixed minimum
degree increasing the system size decreases the synchroniza-
tion in coupled oscillators’ scale-free network, whereas in
scale-free task-completion systems larger eigenvalues have a
very weak effect in the width so the level of synchronization
stays almost the same as the system size goes to infinity.

Analogous questions for heavy-tailed noise distribution
on complex networks have relevance to various transport
phenomena in natural, artificial, and social systems.103–109

For example, “bursty” temporal processes in queuing net-
works have been recently attributed to online activities initi-
ated by humans.110 Correspondingly, one shall then study
extreme fluctuations in task-completion landscapes, where
the local task increments are power-law distributed. Heavy-
tailed noise typically generates similarly tailed local field
variables through the collective dynamics in SW31,32 and
SF111 networks. Then, the largest fluctuations will likely di-
verge as a power law with the system size, expectedly gov-
erned by the Fréchet distribution.34,35
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